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Question 1.: Jets and the De Laval Nozzle

A very interesting application of the Bernoulli equation, for compressible
fluids, concerns the de Laval Nozzle. A de Laval nozzle is a tube that is
pinced in the middle, making a carefully balanced, asymmetric hourglass
shape. The nozzle was developed in 1888 by the Swedish inventor Gustaf
de Laval for use on a steam turbine. The principle was first used for rocket
engines by Robert Goddard. An illustration of a de Laval Nozzle is shown
in figure 1.

Figuur 1: Illustration of the de Laval Nozzle

a. We make the approximation of steady, quasi-1-D barotropic flow. Es-
sential is that the flow is compressible (ie. not incompressible). The
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1-D flow velocity (along the x-axis) is u, the density is ρ, the pres-
sure p. Write the Bernoulli equation for compressible flow (ignoring
an external force like gravity).

b. If the local sectional area of the nozzle is A, write the continuity equa-
tion.

c. Infer from the Bernoulli equation that

dρ

ρ
= −M2du

u
(1)

where M = u/cs is the Mach number of the flow, the ratio of flow
velocity to the sound speed,

c2s =
dp

dρ
. (2)

d. Invoking the continuity equation (question b), show that

dρ

ρ
+
du

u
+
dA

A
= 0 (3)

e. and hence show that

(1−M2)
du

u
= −dA

A
. (4)

f. Investigating the consequences of this nozzle equation, describe first
what the consequence is for the flow velocity when the cross section A
changes and the flow is subsonic. On the other hand, what happens
if the flow is supersonic ? Why is the latter at first counterintuitive
? How can this be explained when looking at the development of the
density ρ ?

g. A sonic transition happens when the flow passes from subsonic to
supersonic, ie. when M = 1. If du/dx is finite, why does this happen
at the throat of the nozzle ?
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Question 2.: Incompressible inviscid flow

Consider a source (or a sink) in three dimensions. The flow field must point
radially outward from origin and thus ~u = f(r)r̂.

a) Using spherical polar coordinates show that, if the flow is incompress-
ible then the velocity field is given by,

~u =
m

4πr2
r̂ (5)

where m is the strength of the source given by,

m =

∫
S
~u · n̂dS (6)

b) Now apply Euler’s equation for a steady flow and show that pressure
follows

p = − m2ρ

32π2r4
+ const (7)

where ρ is the density.

c) Now we know that the potential φ and stream function ψ are defined
as follows in polar (r, θ) co-ordinates:

ur =
∂φ

∂r
=

1

r2 sin θ

∂ψ

∂θ
(8)

uθ =
1

r

∂φ

∂θ
= − 1

r sin θ

∂ψ

∂r

Show that in this case,

φ = − m

4πr
(9)

ψ =
m

4π
(1− cos θ)
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Question 3.: Hydrostatics

In case of static fluids Euler’s equation becomes

∇P = ρg , (10)

where P is the pressure of the fluid and ρg the force acting on the fluid.

a) Consider a very large, very massive fluid such that self-gravity becomes
important. The Poisson equation relates the gravitational potential φ
to the density ρ

∇2φ(r) = 4πGNρ(r) , (11)

where GN is Newton’s constant. Use the assumption of spherical sym-
metry to find,

1

r2
d

dr

(
r2

ρ

dP

dr

)
= −4πGNρ . (12)

b) In order to solve this, we need a relation between P and ρ, called the
equation of state. Often this is a polytropic relation

P ∝ ρ1+1/n , (13)

where n is called the polytropic index. Show that for the gaseous
planets, where P = αρ2 the above differential equation turns into the
following form

1

r2
∂

∂r

(
r2
∂ρ

∂r

)
+ β2ρ = 0 . (14)

where β2 = 2πGN
α .

c) The above equation has a solution,

ρ(r) = A
sin(βr)

βr
+B

cos(βr)

βr
(15)

A,B are constants. Using proper boundary conditions show that the
central pressure in the gaseous planets is,

P (0) =
πGM2

8R4
(16)

d) Assume a planet with a constant density (no relation between P and
ρ) has radius R and mass M . The pressure at the center is Pc, and
the pressure at the surface is PR = 0. Derive an expression for the
pressure P (r) as function of radius in terms of M and R (and G etc.).
What is the central pressure?
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Question 4.: Navier-Stokes Equation and Poiseuille Equation

We are going to investigate the Navier-Stokes equation, and its application
towards the flow through a cylindrical pipe.

a) Write down the Navier-Stokes equation for an incompressible fluid
with viscosity η, with ~v the velocity of the flow, ρ its density and p its
pressure.

b) A characteristic of viscous fluids is the Reynolds number. Specify the
definition of the Reynolds number, and derive an estimate for its value
for a fluid with typical velocity U and size L. For which values of the
Reynolds number the viscous effects beecome important ?

One situation in which we can derive an analytical expression for a viscous
flow is that of a steady, laminar flow through a tube or pipe with radius R.
Steady means that the time derivative of the relevant physical quantities is
zero: ∂/∂t = 0. For the pipe we use cylindrical coordinates, x along the
length of the pipe, radius r and sectional angle θ.

The flow is only along the length of the pipe, ux = v. The radial and
angular components of the fluid velocity are zero: ur = utheta = 0. The flow
is axisymmetric, and can only vary in the radial direction or, possibly, along
the x-direction. That is ∂/∂θ = 0. The flow is fully developed and will not
vary along the x-direction as the diameter of the pipe is constant along its
length:

∂v

∂x
= 0 (17)

c) Show that the Navier-Stokes equation for this situation can be written
as

1

r

∂

∂r

(
r
∂v

∂r

)
=

1

η

∂p

∂x

0 =
1

η

∂p

∂r
(18)

d) Argue that the pressure drop along the x-direction in the pipe is linear,
i.e. that (∂p/∂x) is constnat, and thus

∂p

∂x
= −∆p

L
(19)

where ∆p is the pressure drop along a length L of the pipe.

e) Subsequently, show that the general solution for this equation can be
written as

v =
1

4η

∂p

∂x
r2 + c1 ln r + c2 (20)

where c1 and c2 are integration constants.
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f) From the boundary condition that the velocity v is finite at r = 0, it
follows that c1 = 0. Show that from the no slip boundary condition
at the wall of the pipe, ie. ux = v = 0 at r = R follows:

c2 = − 1

4η

∂p

∂x
R2 (21)

g) and that therefore the generic solution for the flow field is given by

v(r) =
1

4η

∆p

L
(R2 − r2) . (22)

This is called the Hagen-Poiseuille equation. Describe and explain how
the flow field v(r) in the pipe behaves as function of radius r.

h) Show that for a fluid with a density ρ the amount of mass transported
through the pipe, per time interval, is given by

Ṁ =

∫ R

0
2πρvrdr =

π∆p

4ηL
R4 . (23)

SUCCES !!!!
BEDANKT VOOR JULLIE AANDACHT EN INTERESSE !!!!

Rien & Saikat
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