SCHRIFTELIJK TENTAMEN

ASTROPHYSICAL HYDRODYNAMICS
 $3^{\text {rd }}$ quarter 2015/2016

April 6, 2016

NOTE: THIS EXAM CONTAINS 4 QUESTIONS, 6 pages.
Please assure you have read all pages and questions.
Mention your name and studentnr. on ALL pages that you hand in.

Question 1.: Jets and the De Laval Nozzle

A very interesting application of the Bernoulli equation, for compressible fluids, concerns the de Laval Nozzle. A de Laval nozzle is a tube that is pinced in the middle, making a carefully balanced, asymmetric hourglass shape. The nozzle was developed in 1888 by the Swedish inventor Gustaf de Laval for use on a steam turbine. The principle was first used for rocket engines by Robert Goddard. An illustration of a de Laval Nozzle is shown in figure 1 .

Figuur 1: Illustration of the de Laval Nozzle
a. We make the approximation of steady, quasi-1-D barotropic flow. Essential is that the flow is compressible (ie. not incompressible). The

1-D flow velocity (along the x -axis) is u, the density is ρ, the pressure p. Write the Bernoulli equation for compressible flow (ignoring an external force like gravity).
b. If the local sectional area of the nozzle is A , write the continuity equation.
c. Infer from the Bernoulli equation that

$$
\begin{equation*}
\frac{d \rho}{\rho}=-M^{2} \frac{d u}{u} \tag{1}
\end{equation*}
$$

where $M=u / c_{s}$ is the Mach number of the flow, the ratio of flow velocity to the sound speed,

$$
\begin{equation*}
c_{s}^{2}=\frac{d p}{d \rho} . \tag{2}
\end{equation*}
$$

d. Invoking the continuity equation (question b), show that

$$
\begin{equation*}
\frac{d \rho}{\rho}+\frac{d u}{u}+\frac{d A}{A}=0 \tag{3}
\end{equation*}
$$

e. and hence show that

$$
\begin{equation*}
\left(1-M^{2}\right) \frac{d u}{u}=-\frac{d A}{A} . \tag{4}
\end{equation*}
$$

f. Investigating the consequences of this nozzle equation, describe first what the consequence is for the flow velocity when the cross section A changes and the flow is subsonic. On the other hand, what happens if the flow is supersonic? Why is the latter at first counterintuitive ? How can this be explained when looking at the development of the density ρ ?
g. A sonic transition happens when the flow passes from subsonic to supersonic, ie. when $M=1$. If $d u / d x$ is finite, why does this happen at the throat of the nozzle?

Question 2.: Incompressible inviscid flow

Consider a source (or a sink) in three dimensions. The flow field must point radially outward from origin and thus $\vec{u}=f(r) \hat{r}$.
a) Using spherical polar coordinates show that, if the flow is incompressible then the velocity field is given by,

$$
\begin{equation*}
\vec{u}=\frac{m}{4 \pi r^{2}} \hat{r} \tag{5}
\end{equation*}
$$

where m is the strength of the source given by,

$$
\begin{equation*}
m=\int_{S} \vec{u} \cdot \hat{n} d S \tag{6}
\end{equation*}
$$

b) Now apply Euler's equation for a steady flow and show that pressure follows

$$
\begin{equation*}
p=-\frac{m^{2} \rho}{32 \pi^{2} r^{4}}+\text { const } \tag{7}
\end{equation*}
$$

where ρ is the density.
c) Now we know that the potential ϕ and stream function ψ are defined as follows in polar (r, θ) co-ordinates:

$$
\begin{align*}
& u_{r}=\frac{\partial \phi}{\partial r}=\frac{1}{r^{2} \sin \theta} \frac{\partial \psi}{\partial \theta} \\
& u_{\theta}=\frac{1}{r} \frac{\partial \phi}{\partial \theta}=-\frac{1}{r \sin \theta} \frac{\partial \psi}{\partial r} \tag{8}
\end{align*}
$$

Show that in this case,

$$
\begin{align*}
\phi & =-\frac{m}{4 \pi r} \\
\psi & =\frac{m}{4 \pi}(1-\cos \theta) \tag{9}
\end{align*}
$$

Question 3.: Hydrostatics

In case of static fluids Euler's equation becomes

$$
\begin{equation*}
\nabla P=\rho \mathrm{g}, \tag{10}
\end{equation*}
$$

where P is the pressure of the fluid and $\rho \mathrm{g}$ the force acting on the fluid.
a) Consider a very large, very massive fluid such that self-gravity becomes important. The Poisson equation relates the gravitational potential ϕ to the density ρ

$$
\begin{equation*}
\nabla^{2} \phi(\boldsymbol{r})=4 \pi G_{N} \rho(\boldsymbol{r}), \tag{11}
\end{equation*}
$$

where G_{N} is Newton's constant. Use the assumption of spherical symmetry to find,

$$
\begin{equation*}
\frac{1}{r^{2}} \frac{d}{d r}\left(\frac{r^{2}}{\rho} \frac{d P}{d r}\right)=-4 \pi G_{N} \rho \tag{12}
\end{equation*}
$$

b) In order to solve this, we need a relation between P and ρ, called the equation of state. Often this is a polytropic relation

$$
\begin{equation*}
P \propto \rho^{1+1 / n} \tag{13}
\end{equation*}
$$

where n is called the polytropic index. Show that for the gaseous planets, where $P=\alpha \rho^{2}$ the above differential equation turns into the following form

$$
\begin{equation*}
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \rho}{\partial r}\right)+\beta^{2} \rho=0 \tag{14}
\end{equation*}
$$

where $\beta^{2}=\frac{2 \pi G_{N}}{\alpha}$.
c) The above equation has a solution,

$$
\begin{equation*}
\rho(r)=A \frac{\sin (\beta r)}{\beta r}+B \frac{\cos (\beta r)}{\beta r} \tag{15}
\end{equation*}
$$

A, B are constants. Using proper boundary conditions show that the central pressure in the gaseous planets is,

$$
\begin{equation*}
P(0)=\frac{\pi G M^{2}}{8 R^{4}} \tag{16}
\end{equation*}
$$

d) Assume a planet with a constant density (no relation between P and ρ) has radius R and mass M. The pressure at the center is P_{c}, and the pressure at the surface is $P_{R}=0$. Derive an expression for the pressure $P(r)$ as function of radius in terms of M and R (and G etc.). What is the central pressure?

Question 4.: Navier-Stokes Equation and Poiseuille Equation

We are going to investigate the Navier-Stokes equation, and its application towards the flow through a cylindrical pipe.
a) Write down the Navier-Stokes equation for an incompressible fluid with viscosity η, with \vec{v} the velocity of the flow, ρ its density and p its pressure.
b) A characteristic of viscous fluids is the Reynolds number. Specify the definition of the Reynolds number, and derive an estimate for its value for a fluid with typical velocity U and size L. For which values of the Reynolds number the viscous effects beecome important?

One situation in which we can derive an analytical expression for a viscous flow is that of a steady, laminar flow through a tube or pipe with radius R. Steady means that the time derivative of the relevant physical quantities is zero: $\partial / \partial t=0$. For the pipe we use cylindrical coordinates, x along the length of the pipe, radius r and sectional angle θ.

The flow is only along the length of the pipe, $u_{x}=v$. The radial and angular components of the fluid velocity are zero: $u_{r}=u_{\text {theta }}=0$. The flow is axisymmetric, and can only vary in the radial direction or, possibly, along the x -direction. That is $\partial / \partial \theta=0$. The flow is fully developed and will not vary along the x -direction as the diameter of the pipe is constant along its length:

$$
\begin{equation*}
\frac{\partial v}{\partial x}=0 \tag{17}
\end{equation*}
$$

c) Show that the Navier-Stokes equation for this situation can be written as

$$
\begin{align*}
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial v}{\partial r}\right) & =\frac{1}{\eta} \frac{\partial p}{\partial x} \\
0 & =\frac{1}{\eta} \frac{\partial p}{\partial r} \tag{18}
\end{align*}
$$

d) Argue that the pressure drop along the x-direction in the pipe is linear, i.e. that $(\partial p / \partial x)$ is constnat, and thus

$$
\begin{equation*}
\frac{\partial p}{\partial x}=-\frac{\Delta p}{L} \tag{19}
\end{equation*}
$$

where Δp is the pressure drop along a length L of the pipe.
e) Subsequently, show that the general solution for this equation can be written as

$$
\begin{equation*}
v=\frac{1}{4 \eta} \frac{\partial p}{\partial x} r^{2}+c_{1} \ln r+c_{2} \tag{20}
\end{equation*}
$$

where c_{1} and c_{2} are integration constants.
f) From the boundary condition that the velocity v is finite at $r=0$, it follows that $c_{1}=0$. Show that from the no slip boundary condition at the wall of the pipe, ie. $u_{x}=v=0$ at $r=R$ follows:

$$
\begin{equation*}
c_{2}=-\frac{1}{4 \eta} \frac{\partial p}{\partial x} R^{2} \tag{21}
\end{equation*}
$$

g) and that therefore the generic solution for the flow field is given by

$$
\begin{equation*}
v(r)=\frac{1}{4 \eta} \frac{\Delta p}{L}\left(R^{2}-r^{2}\right) . \tag{22}
\end{equation*}
$$

This is called the Hagen-Poiseuille equation. Describe and explain how the flow field $v(r)$ in the pipe behaves as function of radius r.
h) Show that for a fluid with a density ρ the amount of mass transported through the pipe, per time interval, is given by

$$
\begin{equation*}
\dot{M}=\int_{0}^{R} 2 \pi \rho v r \mathrm{~d} r=\frac{\pi \Delta p}{4 \eta L} R^{4} \tag{23}
\end{equation*}
$$

SUCCES !!!!
BEDANKT VOOR JULLIE AANDACHT EN INTERESSE !!!!
Rien \& Saikat

